ANALYSIS OF GATE 2016
Computer Science and Information Technology

GATE-2016_CS_6-Feb _2 PM:5PM(Afternoon)

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>NO OF QUESTION</th>
<th>Topics Asked in Paper</th>
<th>Level of Toughness</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Structure</td>
<td>1 M: 3, 2 M: 5</td>
<td>Algorithm Analysis; Stacks and Queues; Height Balanced Trees; Queues; Heaps, Quick Short, C Programming</td>
<td>Tough</td>
<td>13</td>
</tr>
<tr>
<td>Design and Analysis of Algorithm</td>
<td>1 M: 2, 2 M: 3</td>
<td>Sorting Algorithms; Complexity Selections; Sort; merge sort</td>
<td>Moderate</td>
<td>8</td>
</tr>
<tr>
<td>Subject</td>
<td>1 M: 2</td>
<td>2 M: 2</td>
<td>Disc Scheduling; Paging Algorithm; Critical Sections; Optimal Replacement;</td>
<td>Easy</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>DMGT</td>
<td>1 M: 1</td>
<td>2 M: 2</td>
<td>Recursion; Generations; Graph;</td>
<td>Conceptual</td>
</tr>
<tr>
<td>Digital</td>
<td>1 M: 1</td>
<td>2 M: 1</td>
<td>JK Flip flop; Multiplexer; Combinational & Sequential circuits;</td>
<td>Easy</td>
</tr>
<tr>
<td>Computer organization</td>
<td>1 M: 2</td>
<td>2 M: 4</td>
<td>Pipeline; DMA controller; I/O System; Catch memory; file system;</td>
<td>Tough</td>
</tr>
<tr>
<td>DBMS</td>
<td>1 M: 2</td>
<td>2 M: 1</td>
<td>Normalization; Transaction & Concurrency Control;</td>
<td>Easy</td>
</tr>
<tr>
<td>Computer Network</td>
<td>1 M: 2</td>
<td>2 M: 3</td>
<td>Token Rings; Stop & Wait; Data link Layer Protocol; Applications Layer;</td>
<td>Moderate</td>
</tr>
<tr>
<td>Theory of Computation</td>
<td>1 M: 4</td>
<td>2 M: 3</td>
<td>Regular Grammar & Expression, recursively enumerable, Push Down automata</td>
<td>Conceptual</td>
</tr>
<tr>
<td>Compiler Design</td>
<td>1 M: 1</td>
<td>2 M: 2</td>
<td>Regular Grammar & Regular Language, Syntax directed Translation; Dynamic Scoping</td>
<td>Easy</td>
</tr>
<tr>
<td>Mathematics</td>
<td>1 M: 5</td>
<td>2 M: 4</td>
<td>Probability; Maximum colors sufficient to color planar graphs; Degree of polynomial Logically interference; System of linear equations; Matrix eigen value</td>
<td>Moderate</td>
</tr>
<tr>
<td>GA</td>
<td>1 M: 5</td>
<td>2 M: 5</td>
<td>Time & Work; Venn Diagram; Verbal Ability; Probability & Distribution;</td>
<td>Easy</td>
</tr>
<tr>
<td>Total</td>
<td>65</td>
<td></td>
<td></td>
<td>Moderate</td>
</tr>
</tbody>
</table>

Faculty Feedback: Few questions came from New Syllabus; General Ability was pretty easy; many question from DSA & CO & TOC qualifying is easy but scoring is tough. Practice previous question papers will be beneficial.
Q NO. 1
The man who is now Municipal Commissioner worked as ________________.

(A) the security guard at a university
(B) a security guard at the university
(C) a security guard at university
(D) the security guard at the university

[Ans. B]
The man who is now municipal commissioner worked as a security guard at the university

Q NO. 2
Nobody knows how the Indian cricket team is going to cope with the difficult and seamer-friendly wickets in Australia.

Choose the option which is closest in meaning to the underlined phrase in the above sentence.

(A) put up with (B) put in with (C) put down to (D) put up against

[Ans. A]
Nobody knows how the Indian cricket team is going to put up with difficult and seamer friendly wickets in Australia
Q NO. 3
Find the odd one in the following group of words.

mock, deride, praise, jeer

(A) mock (B) deride (C) praise (D) jeer

[Ans. C]
Mock, Deride, Jeer all are synonyms

Q NO. 4
Pick the odd one from the following options.

(A) CADBE (B) JHKIL (C) XXYWZ (D) ONPMQ

[Ans. D]
In option A, B, C 2nd letter and 1st letter is 2. In option D it is 1.

Q NO. 5
In a quadratic function, the value of the product of the roots (α, β) is 4. Find the value of

\[\frac{\alpha^n + \beta^n}{\alpha^{-n} + \beta^{-n}} \]

(A) \(n^4\) (B) \(4^n\) (C) \(2^{2n-1}\) (D) \(4^{n-1}\)

[Ans. B]
Let \(n = 1\), then \(\frac{\alpha^n + \beta^n}{\alpha^{-n} + \beta^{-n}} = \frac{\alpha + \beta}{\frac{1}{\alpha^{n}} + \frac{1}{\beta^{n}}} = \alpha^n \beta^n = 4^n = \alpha \beta = 4\)

\[\because n = 2, \frac{\alpha^2 + \beta^2}{\alpha^{-2} + \beta^{-2}} = \alpha^2 \beta^2 = 4^2\]

\[\therefore n = 3, \frac{\alpha^3 + \beta^3}{\alpha^{-3} + \beta^{-3}} = \alpha^3 \beta^3 = 4^3\]

So, for n, solution is \(4^n\)
Q NO. 6
Among 150 faculty members in an institute, 55 are connected with each other through Facebook® and 85 are connected through WhatsApp®. 30 faculty members do not have Facebook® or WhatsApp® accounts. The number of faculty members connected only through Facebook® accounts is ________.

(A) 35 (B) 45 (C) 65 (D) 90

[Ans. A]
150 faculty member, 30 don't have Facebook or whatsapp. Thus, 120 are connected by whatsapp or Facebook. Among then, 85 connected through whatsapp, the, (120 – 85)= 35 connected only through Facebook

Q NO. 7
Computers were invented for performing only high-end useful computations. However, it is no understatement that they have taken over our world today. The internet, for example, is ubiquitous. Many believe that the internet itself is an unintended consequence of the original invention. With the advent of mobile computing on our phones, a whole new dimension is now enabled. One is left wondering if all these developments are good or, more importantly, required.

Which of the statement(s) below is/are logically valid and can be inferred from the above paragraph?

(i) The author believes that computers are not good for us.
(ii) Mobile computers and the internet are both intended inventions

(A) (i) only (B) (ii) only (C) both (i) and (ii) (D) neither (i) nor (ii)

[Ans. D]
The first and second sentences tell us that computers are invented for computation and internet for intended invention. These sentences lead to option ii so option (B) is the right inference.

Q NO. 8
All hill-stations have a lake. Ooty has two lakes.

Which of the statement(s) below is/are logically valid and can be inferred from the above sentences?

(i) Ooty is not a hill-station.
(ii) No hill-station can have more than one lake.

(A) (i) only (B) (ii) only
(C) both (i) and (ii) (D) neither (i) nor (ii)

[Ans. D]
Statement (i) is not true because Ooty is a hill station due Ooty has two lakes statement (ii) is also not true, because in given statements, for hill station one lake is compulsory but not mentioned about number of lakes.
Q NO. 9
In a 2×4 rectangle grid shown below, each cell is a rectangle. How many rectangles can be observed in the grid?

![2x4 grid]

(A) 21 (B) 27 (C) 30 (D) 36

[Ans. C]
In given 2×4 rectangle grid, the following type of rectangles are present.
One figured rectangles = 8
Two figured rectangles = 10
Three figured rectangles = 4
Four figured rectangles = 5
Six figured rectangles = 2
Eight figured rectangles = 1
Total No. of rectangles = 30
∴ The No. of rectangles observed in the given grid = 30.
Q NO. 10

Choose the correct expression for \(f(x) \) given in the graph.

\[
\begin{align*}
(A) & \quad f(x) = 1 - |x - 1| \\
(B) & \quad f(x) = 1 + |x - 1| \\
(C) & \quad f(x) = 2 - |x - 1| \\
(D) & \quad f(x) = 2 + |x - 1|
\end{align*}
\]

[Ans. C]

At \(x = 0 \) \(f(0) = 1 \)
Put \(x = 0 \) in all options. You will get
\[
f(x) = 2 - |x - 1| = 1 |_{x=0}
\]
Rest of the option do not match.
Q NO. 1
Consider the following expressions:
(i) \(\text{false} \)
(ii) \(Q \)
(iii) \(\text{true} \)
(iv) \(P \lor Q \)
(v) \(\lnot Q \lor P \)
The number of expressions given above that are logically implied by \(P \land (P \Rightarrow Q) \) is ________.

[Ans. *] Range: 4 to 4

Q NO. 2
Let \(f(x) \) be a polynomial and \(g(x) = f'(x) \) be its derivative. If the degree of \((f(x) + f(-x)) \) is 10, then the degree of \((g(x) - g(-x)) \) is ________.

[Ans. *] Range: 9 to 9
If \(f(x) \) is a polynomial of degree \(n \)
Then \(f'(x) \) is a polynomial of degree \((n - 1) \)
\(f(x) + f(-x) \) is a polynomial of degree 10
\(\therefore g(x) - g(-x) \) is polynomial of degree 9

Q NO. 3
The minimum number of colours that is sufficient to vertex-colour any planar graph is ________.

[Ans. *] Range: 4 to 4
By 4-color theorem, every planar graph is 4-colorable
Q NO. 4

Consider the systems, each consisting of \(m \) linear equations in \(n \) variables.

I. If \(m < n \), then all such systems have a solution
II. If \(m > n \), then none of these systems has a solution
III. If \(m = n \), then there exists a system which has a solution

Which one of the following is **CORRECT**?

(A) I, II and III are true
(B) Only II and III are true
(C) Only III is true
(D) None of them is true

[Ans. C]

(i) Consider 2 equations in 3 variables
\[\begin{align*}
 x - y + z &= 1 \\
 -x + y - z &= 2 \\
\end{align*} \]
This system has no solution (inconsistent)
\(x = 1 \) and \(y = 1 \)
\(\therefore \) I is false

(ii) Consider 3 equations in two variables.
\[\begin{align*}
 x + y &= 2 \\
 x - y &= 0, \\
 3x + y &= 4 \\
\end{align*} \]
This system has a unique solution
\(\therefore \) II is false

(iii) Consider a system with 2 equations and 2 variables
\[\begin{align*}
 x + y &= 2 \\
 x - y &= 0 \\
\end{align*} \]
The system has a solution \(x = 1 \) and \(y = 1 \)
\(\therefore \) Option (C) is true

Q NO. 5

Suppose that a shop has an equal number of LED bulbs of two different types. The probability of an LED bulb lasting more than 100 hours given that it is of Type 1 is 0.7, and given that it is of Type 2 is 0.4. The probability that an LED bulb chosen uniformly at random lasts more than 100 hours is ____________.

[Ans. *] Range: 0.55 to 0.55

\(A \) → event of selection of type-1 bulb
\(B \) → event of selection of type-2 bulb
\(E \) → event of selection of bulb glow for more than 100 hrs

We require
\[
P(A)P(E/A) + P(B)P(E/B) = \frac{1}{2} \times 0.7 + \frac{1}{2} \times 0.4 = 0.55
\]
Q NO. 6
Suppose that the eigenvalues of matrix A are $1, 2, 4$. The determinant of $(A^{-1})^T$ is __________.

[Ans. *] Range: 0.124 to 0.126
\[\lambda = 1, 2, 4 \]
\[|A| = 1 \times 2 \times 4 = 8 \]
\[\implies |A^{-1}| = \frac{1}{|A|} = \frac{1}{8} \]
\[\therefore |(A^{-1})^T| = |A^{-1}| = \frac{1}{8} \]

Q NO. 7
Consider an eight-bit ripple-carry adder for computing the sum of A and B, where A and B are integers represented in 2's complement form. If the decimal value of A is one, the decimal value of B that leads to the longest latency for the sum to stabilize is __________.

[Ans. *] Range: -1 to -1
When all bits in 'B' register is '1', then only it gives highest delay.
\[\therefore -1' \text{ in 8 bit notation of } 2's \text{ complement is 1111 1111} \]

Q NO. 8
Let, $x_1 \oplus x_2 \oplus x_3 \oplus x_4 = 0$ where x_1, x_2, x_3, x_4 are Boolean variables, and \oplus is the XOR operator.
Which one of the following must always be TRUE?

(A) $x_1 x_2 x_3 x_4 = 0$
(B) $x_1 x_3 + x_2 = 0$
(C) $\bar{x}_1 \oplus x_3 = \bar{x}_2 \oplus x_4$
(D) $x_1 + x_2 + x_3 + x_4 = 0$

[Ans. C]
For all cases option A, B and D not satisfies.
Q NO. 9
Let \(X \) be the number of distinct 16-bit integers in 2’s complement representation. Let \(Y \) be the number of distinct 16-bit integers in sign magnitude representation. Then \(X - Y \) is ________.

[Ans. *] Range: 1 to 1
The range (or) distinct values
For 2’s complement \(\Rightarrow - \left(\left(2^{n-1} \right) - 1 \right) \) to \(\left(2^{n-1} - 1 \right) \)
For sign magnitude \(\Rightarrow - \left(\left(2^{n-1} - 1 \right) \right) \) to \(\left(2^{n-1} - 1 \right) \)
Let, \(n = 2 \) ⇒ in 2’s complement
\(- \left(2^{2-1} \right) \) to \(\left(2^{2-1} - 1 \right) \)
-2 to +1 ⇒ -2, -1, 0, +1 ⇒ \(x = 4 \)
n = 2 in sign magnitude \(\Rightarrow -1 \) to +1 ⇒ \(y = 3 \)
x - y = 1

Q NO. 10
A processor has 40 distinct instructions and 24 general purpose registers. A 32-bit instruction word has an opcode, two register operands and an immediate operand. The number of bits available for the immediate operand field is ________.

[Ans. *] Range: 16 to 16

\[
\begin{array}{c|c|c|c}
\text{Operation} & A_1 & A_2 & \text{Operand} \\
\log_2^{40} & \log_2^{24} & \log_2^{24} & \text{xxx} \\
6 & 5 & 5 & \text{xxx} \\
\end{array}
\]
\[\therefore 32 - 16 = 16\]

Q NO. 11
Breadth First Search (BFS) is started on a binary tree beginning from the root vertex. There is a vertex \(t \) at a distance four from the root. If \(t \) is the \(n \)-th vertex in this BFS traversal, then the maximum possible value of \(n \) is ________.

[Ans. *] Range: 31 to 31
Maximum possible happens when we have complete tree and our \('t' \) node is the last leaf node at height 4
So, \(1 + 2 + 4 + 8 + 16 = 31 \) is the \('t' \) node
Q NO. 12

The value printed by the following program is ________.

```c
void f(int* p, int m){
    m = m + 5;
    *p = *p + m;
    return;
}

void main(){
    int i=5, j=10;
    f(&i, &j);
    printf("%d", i+j);
}
```

[Ans. *] Range: 30 to 30

\[
\begin{array}{c|c}
 i & j \\
\hline
 101 & 100 \\
 201 & 200 \\
\end{array}
\]

\[m = m + 5; // m = 15\]
\[*p = *p + m; // *p = 5 + 15\]
\[*p = 20 \text{ (i.e., } i = 20\]
\[i + j = 20 + 10 = 30\]
Q NO. 13
Assume that the algorithms considered here sort the input sequences in ascending order. If the input is already in ascending order, which of the following are TRUE?

I. Quicksort runs in $\Theta(n^2)$ time
II. Bubblesort runs in $\Theta(n^2)$ time
III. Mergesort runs in $\Theta(n)$ time
IV. Insertion sort runs in $\Theta(n)$ time

(A) I and II only
(B) I and III only
(C) II and IV only
(D) I and IV only

[Ans. D]
(i) Quicksort will take worst case, if the input is in ascending order i.e. $\Theta(n^2)$
(ii) Insertion sort takes $\Theta(n)$

Q NO. 14
The Floyd-Warshall algorithm for all-pair shortest paths computation is based on

(A) Greedy paradigm.
(B) Divide-and-Conquer paradigm.
(C) Dynamic Programming paradigm.
(D) neither Greedy nor Divide-and-Conquer nor Dynamic Programming paradigm.

[Ans. C]

Q NO. 15
N items are stored in a sorted doubly linked list. For a delete operation, a pointer is provided to the record to be deleted. For a decrease-key operation, a pointer is provided to the record on which the operation is to be performed.

An algorithm performs the following operations on the list in this order: $\Theta(N)$ delete, $O(\log N)$ insert, $O(\log N)$ find, and $\Theta(N)$ decrease-key. What is the time complexity of all these operations put together?

(A) $O(\log^2 N)$ (B) $O(N)$ (C) $O(N^2)$ (D) $\Theta(N^2 \log N)$

[Ans. C]
Q NO. 16

The number of states in the minimum sized DFA that accepts the language defined by the regular expression

\[(0+1)^*(0+1)(0+1)^*\]

is __________.

[Ans. *] Range: 2 to 2

\[
\begin{array}{c}
q_0 \\
\downarrow 0,1 \\
q_1
\end{array}
\]

\[r = (0 + 1)^*(0 + 1)(0 + 1)^*\]

The number of states in minimal DFA is 2

Q NO. 17

Language \(L_1\) is defined by the grammar: \(S_1 \rightarrow aS_1b|\epsilon\)

Language \(L_2\) is defined by the grammar: \(S_2 \rightarrow abS_2|\epsilon\)

Consider the following statements:

\(P: \ L_1\) is regular

\(Q: \ L_2\) is regular

Which one of the following is **TRUE**?

\(A\) Both \(P\) and \(Q\) are true

\(B\) \(P\) is true and \(Q\) is false

\(C\) \(P\) is false and \(Q\) is true

\(D\) Both \(P\) and \(Q\) are false

[Ans. C]

\(L_1: S_1 \rightarrow aS_1 b|\epsilon\)

\(L_2: S_2 \rightarrow abS_2 |\epsilon\)

\(L_1: \{a^n b^n|n > 0\} \rightarrow \text{CFL}\)

\(L_2: (ab)^* \rightarrow \text{RL}\)

\(P\) is false and \(Q\) is true
Q NO. 18
Consider the following types of languages: \(L_1 \): Regular, \(L_2 \): Context-free, \(L_3 \): Recursive, \(L_4 \): Recursively enumerable. Which of the following is/are **TRUE**?

I. \(\overline{L_3} \cup L_4 \) is recursively enumerable
II. \(L_2 \cup L_3 \) is recursive
III. \(L_1^* \cap L_2 \) is context-free
IV. \(L_1 \cup \overline{L_2} \) is context-free

(A) I only
(B) I and III only
(C) I and IV only
(D) I, II and III only

[Ans. D]

\(L_1 \): Regular
\(L_2 \): CFL
\(L_3 \): Recursive language
\(L_4 \): REL
(i) \(\overline{L_3} \) is Recursive
 \(\overline{L_3} \cup L_4 \) is REL
(ii) \(\overline{L_2} \) is recursive
 \(\overline{L_3} \) is recursive
 \(\Rightarrow \overline{L_2} \cup L_3 \) is also recursive
(iii) \(L_1^* \) is regular
 \(L_2 \) is CFL
 \(\Rightarrow L_1^* \cap L_2 \) is CFL
Since, CFL is closed under the intersection with RL
\(\therefore RL \cap CFL \) is CFL
(iv) \(L_1 \) is RL
 \(\overline{L_2} \) is recursive
 \(\Rightarrow L_1 \cap \overline{L_2} \) is CFL is not possible
\(\therefore (i), (ii) \) and (iii) are correct
Q NO. 19

Match the following:

(P) Lexical analysis (i) Leftmost derivation
(Q) Top down parsing (ii) Type checking
(R) Semantic analysis (iii) Regular expressions
(S) Runtime environments (iv) Activation records

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>P ↔ i, Q ↔ ii, R ↔ iv, S ↔ iii</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(B)</td>
<td>P ↔ iii, Q ↔ i, R ↔ ii, S ↔ iv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C)</td>
<td>P ↔ ii, Q ↔ iii, R ↔ i, S ↔ iv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(D)</td>
<td>P ↔ iv, Q ↔ i, R ↔ ii, S ↔ iii</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Ans. B]

Q NO. 20

In which one of the following page replacement algorithms it is possible for the page fault rate to increase even when the number of allocated frames increases?

(A) LRU (Least Recently Used)
(B) OPT (Optimal Page Replacement)
(C) MRU (Most Recently Used)
(D) FIFO (First In First Out)

[Ans. D]
Q NO. 21
B+ Trees are considered BALANCED because
(A) the lengths of the paths from the root to all leaf nodes are all equal.
(B) the lengths of the paths from the root to all leaf nodes differ from each other by at most 1.
(C) the number of children of any two non-leaf sibling nodes differ by at most 1.
(D) the number of records in any two leaf nodes differ by at most 1.

[Ans. A]
A Tree is balanced, if the lengths of the paths from the root to all leaf nodes are all equal

Q NO. 22
Suppose a database schedule S involves transactions T_1, \ldots, T_n. Construct the precedence graph of S with vertices representing the transactions and edges representing the conflicts. If S is serializable, which one of the following orderings of the vertices of the precedence graph is guaranteed to yield a serial schedule?
(A) Topological order
(B) Depth-first order
(C) Breadth-first order
(D) Ascending order of transaction indices

[Ans. A]
If a schedule is serializable, the topological order of a graph (Precedence graph) yields a serial schedule

Q NO. 23
Anarkali digitally signs a message and sends it to Salim. Verification of the signature by Salim requires
(A) Anarkali’s public key.
(B) Salim’s public key.
(C) Salim’s private key.
(D) Anarkali’s private key.

[Ans. A]
Sign is sender's private key and the receiver side the verification is done with sender public key
Q NO. 24
In an Ethernet local area network, which one of the following statements is TRUE?

(A) A station stops to sense the channel once it starts transmitting a frame.
(B) The purpose of the jamming signal is to pad the frames that are smaller than the minimum frame size.
(C) A station continues to transmit the packet even after the collision is detected.
(D) The exponential backoff mechanism reduces the probability of collision on retransmissions.

[Ans. D]
The concept of binary exponential back-off algorithm.
The exponential back-off mechanism reduces the probability of collision on retransmissions

Q NO. 25
Identify the correct sequence in which the following packets are transmitted on the network by a host when a browser requests a webpage from a remote server, assuming that the host has just been restarted.

(A) HTTP GET request, DNS query, TCP SYN
(B) DNS query, HTTP GET request, TCP SYN
(C) DNS query, TCP SYN, HTTP GET request
(D) TCP SYN, DNS query, HTTP GET request

[Ans. C]
The concept to be followed

Step 1: The client (browser) initiates a DNS query for remote server. It may be that they already have this server in their DNS cache, in which case the client may simply send a TCP SYN directly to the application server.

Step 2: The client will next send a connection request to the application server. This will be a TCP SYN packet, the first in the TCP three-way handshake.

Step 3: Next, after the TCP connection has been established, the client will request data from the server. In the web-based application, the client performs an HTTP GET.
Q NO. 26
A binary relation R on $\mathbb{N} \times \mathbb{N}$ is defined as follows: $(a, b)R(c, d)$ if $a \leq c$ or $b \leq d$. Consider the following propositions:

P: R is reflexive
Q: R is transitive

Which one of the following statements is **TRUE**?

(A) Both P and Q are true.
(B) P is true and Q is false.
(C) P is false and Q is true.
(D) Both P and Q are false.

[Ans. B]

Q NO. 27
Which one of the following well-formed formulae in predicate calculus is **NOT** valid?

(A) $(\forall x p(x) \Rightarrow \forall x q(x)) \Rightarrow (\exists x \neg p(x) \lor \forall x q(x))$
(B) $(\exists x p(x) \lor \exists x q(x)) \Rightarrow \exists x (p(x) \lor q(x))$
(C) $(\exists x (p(x) \land q(x))) \Rightarrow (\exists x p(x) \land \exists x q(x))$
(D) $(\forall x (p(x) \lor q(x))) \Rightarrow (\forall x p(x) \lor \forall x q(x))$

[Ans. D]
(A) The well-formed formula (wff) is valid, because L.H.S \iff R.H.S
(B) The wff is valid, because L.H.S \iff R.H.S.
(C) 1. $\exists x (p(x) \land q(x))$ Premise
 2. $p(a) \land q(a)$ (1), E.S
 3. $p(a)$ (2), simplification
 4. $q(a)$ (2), simplification
 5. $\exists x p(x)$ (3), E.G
 6. $\exists x q(x)$ (4), E.G
 7. $\exists x p(x) \land \exists x q(x)$ (5), (6) conjunction

Proved
(D) Let, $p(x)$: x is politician
 And $q(x)$: x is a sportsman
 Let, $U = \{\text{Sachin Tendulkar, M.S. Dhoni, Rahul Gandhi}\}$
 Be the universe of discourse.
 Here antecedent of the implication is true but consequent is false.
 \therefore Option D is not valid.
Q NO. 28

Consider a set \(U \) of 23 different compounds in a Chemistry lab. There is a subset \(S \) of \(U \) of 9 compounds, each of which reacts with exactly 3 compounds of \(U \). Consider the following statements:

I. Each compound in \(U \setminus S \) reacts with an odd number of compounds.
II. At least one compound in \(U \setminus S \) reacts with an odd number of compounds.
III. Each compound in \(U \setminus S \) reacts with an even number of compounds.

Which one of the above statements is ALWAYS TRUE?

(A) Only I
(B) Only II
(C) Only III
(D) None

[Ans. B]

Let us denote the problem by a non-directed graph with 23 vertices (compounds). If two compounds react with each other, then there exists an edge between the corresponding vertices. In the graph, we have 9 vertices with degree 3 (odd degree). By sum of degrees of vertices theorem, at least one of the remaining vertices should have odd degree.

Q NO. 29

The value of the expression \(13^{99} \pmod{17} \), in the range 0 to 16, is ________.

[Ans. *] Range: 4 to 4

By Fermat's theorem, if \(p \) is a prime number and \(p \) is not a divisor of \(a \), then \(a^{p-1} = 1 \pmod{p} \).

Here, 17 is a prime number and 17 is not a divisor of 13.

\[a^{16} = 1 \pmod{p} \]

\[13^{99} = (13)^{96} \cdot (13)^3 = (13^{16})^6 \cdot 2197 = 1^6 \cdot 2197 \pmod{17} \]

\[13^{99} \pmod{17} = 2197 \pmod{17} = 4 \]

(The remainder obtained by dividing 2197 with 17)

Q NO. 30

Suppose the functions \(F \) and \(G \) can be computed in 5 and 3 nanoseconds by functional units \(U_F \) and \(U_G \), respectively. Given two instances of \(U_F \) and two instances of \(U_G \), it is required to implement the computation \(F(G(X_i)) \) for \(1 \leq i \leq 10 \). Ignoring all other delays, the minimum time required to complete this computation is ________ nanoseconds.

[Ans. *] Range: 28 to 28
Q NO. 31
Consider a processor with 64 registers and an instruction set of size twelve. Each instruction has five distinct fields, namely, opcode, two source register identifiers, one destination register identifier, and a twelve-bit immediate value. Each instruction must be stored in memory in a byte-aligned fashion. If a program has 100 instructions, the amount of memory (in bytes) consumed by the program text is ________.

[Ans. *] Range: 500 to 500
One instruction needs 34 bit,
So number of bytes needed = 5
Program size = 100
∴ Size of the memory in bytes = 500

Q NO. 32
The width of the physical address on a machine is 40 bits. The width of the tag field in a 512 KB 8-way set associative cache is ________ bits.

[Ans. *] Range: 24 to 24
It uses 8 way set associative
∴ Tag size = 24 bits

Q NO. 33
Consider a 3 GHz (gigahertz) processor with a three-stage pipeline and stage latencies τ_1, τ_2, and τ_3 such that $\tau_1 = 3\tau_2/4 = 2\tau_3$. If the longest pipeline stage is split into two pipeline stages of equal latency, the new frequency is ________ GHz, ignoring delays in the pipeline registers.

[Ans. *] Range: 4 to 4

<table>
<thead>
<tr>
<th>Stage 1 (t_1)</th>
<th>Stage 2 (t_2)</th>
<th>Stage 3 (t_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(3/4)t_2$</td>
<td>t_2</td>
<td>$(3/8)t_2$</td>
</tr>
</tbody>
</table>
Old pipeline Clock frequency is 3GHz if time is t_2.

<table>
<thead>
<tr>
<th>Stage 1 (t_1)</th>
<th>Stage 21 (t_{21})</th>
<th>Stage 22 (t_{22})</th>
<th>Stage 3 (t_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(3/4)t_2$</td>
<td>$(t_2/2)$</td>
<td>$(t_2/2)$</td>
<td>$(3/8)t_2$</td>
</tr>
</tbody>
</table>

Clock frequency of new pipeline with time $\left(\frac{3}{4}\right)t_2 \rightarrow \frac{4}{3} \times 3 \text{GHz} = 4\text{GHz}$

Q NO. 34

A complete binary min-heap is made by including each integer in $[1, 1023]$ exactly once. The depth of a node in the heap is the length of the path from the root of the heap to that node. Thus, the root is at depth 0. The maximum depth at which integer 9 can appear is __________.

[Ans.*] Range: 8 to 8
Q NO. 35

The following function computes X^Y for positive integers X and Y.

```c
int exp(int X, int Y) {
    int res = 1, a = X, b = Y;
    while ( b != 0 ){
        if ( b&2 == 0) { a = a*a; b = b/2; }
        else}{ res = res*a; b = b-1; }
    return res;
}
```

Which one of the following conditions is **TRUE** before every iteration of the loop?

(A) $X^Y = a^b$

(B) $(res*a)^Y = (res*X)^b$

(C) $X^Y = res*a^b$

(D) $X^Y = (res*a)^b$

[Ans. C] \[X^Y = res * a^b \]
Q NO. 36

Consider the following New-order strategy for traversing a binary tree:

- Visit the root;
- Visit the right subtree using New-order;
- Visit the left subtree using New-order;

The New-order traversal of the expression tree corresponding to the reverse polish expression 3 4 * 5 − 2 ^ 6 7 * 1 + − is given by:

(A) + − 1 6 7 * 2 ^ 5 − 3 4 *
(B) − + 1 * 6 7 ^ 2 − 5 * 3 4
(C) − + 1 * 7 6 ^ 2 − 5 * 4 3
(D) 1 7 6 * + 2 5 4 3 * − − −

[Ans. C]

Converse preorder
1. Root
2. RST
3. LST

```
     0
   /   \
  6     3
 /   \  /   \
2     5 1   4
```

```
Q NO. 37

Consider the following program:

```c
int f(int *p, int n)
{
 if (n <= 1) return 0;
 else return max(f(p+1, n-1), p[0]-p[1]);
}

int main()
{
 int a[] = {3, 5, 2, 6, 4};
 printf("%d", f(a, 5));
}
```

*Note: max(x, y) returns the maximum of x and y.*

The value printed by this program is _________.

**[Ans. *] Range: 3 to 3**

<table>
<thead>
<tr>
<th>Main ()</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(100)</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>f(100,5)</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>f(102,4)</td>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>f(104,3)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>f(106,2)</td>
<td>-4</td>
<td>-4</td>
</tr>
<tr>
<td>f(108,1)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Q NO. 38

Let $A_1,A_2,A_3$, and $A_4$ be four matrices of dimensions $10 \times 5, 5 \times 20, 20 \times 10$, and $10 \times 5$, respectively. The minimum number of scalar multiplications required to find the product $A_1A_2A_3A_4$ using the basic matrix multiplication method is ________.

[Ans. *] Range: 1500 to 1500

Let $m_{14}$ denote minimum number of scalar multiplication to multiply sequence $M_1M_2M_3M_4$

Where, $M_1 = A, M_2 = B, M_3 = C, M_4 = D$

Let $d_0 = 10, d_1 = 5, d_2 = 20, d_3 = 10, d_4 = 5$

\[ m_{11} = m_{22} = m_{33} = m_{44} = 0 \]

\[ m_{12} = 1000, m_{23} = 1000, m_{34} = 1000, m_{13} = 1500, m_{24} = 1250 \]

\[ m_{14} = \min \left\{ m_{12} + m_{34} + d_0 \times d_1 \times d_4 \right\} = 1500 \]

(OR)

There are 5 possible cases


The scalar multiplications required are 1750, 1500, 3500, 2000, 3000 respectively.

\[ \therefore \text{Minimum number of scalar multiplications} = 1500 \]
Q NO. 39

The given diagram shows the flowchart for a recursive function $A(n)$. Assume that all statements, except for the recursive calls, have $O(1)$ time complexity. If the worst case time complexity of this function is $O(n^\alpha)$, then the least possible value (accurate up to two decimal positions) of $\alpha$ is ________.

Flowchart for Recursive Function $A(n)$

![Flowchart Image]

[Ans. *] Range: 2.2 to 2.4

Q NO. 40

The number of ways in which the numbers 1, 2, 3, 4, 5, 6, 7 can be inserted in an empty binary search tree, such that the resulting tree has height 6, is ________.

Note: The height of a tree with a single node is 0.

[Ans. *] Range: 64 to 64

Formula is $2^n$, here $n$ is 6

$2^6 = 64$
Q NO. 41
In an adjacency list representation of an undirected simple graph \( G = (V, E) \), each edge \((u, v)\) has two adjacency list entries: \([v]\) in the adjacency list of \(u\), and \([u]\) in the adjacency list of \(v\). These are called twins of each other. A twin pointer is a pointer from an adjacency list entry to its twin. If \(|E| = m\) and \(|V| = n\), and the memory size is not a constraint, what is the time complexity of the most efficient algorithm to set the twin pointer in each entry in each adjacency list?

(A) \(\Theta(n^2)\)
(B) \(\Theta(n + m)\)
(C) \(\Theta(m^2)\)
(D) \(\Theta(n^4)\)

[Ans. B]

Q NO. 42
Consider the following two statements:

I. If all states of an NFA are accepting states then the language accepted by the NFA is \(\Sigma^*\).
II. There exists a regular language \(A\) such that for all languages \(B\), \(A \cap B\) is regular.

Which one of the following is CORRECT?

(A) Only I is true
(B) Only II is true
(C) Both I and II are true
(D) Both I and II are false

[Ans. B]
Q NO. 43

Consider the following languages:

\[ L_1 = \{ a^m b^n c^{n+m} : m, n \geq 1 \} \]
\[ L_2 = \{ a^m b^n c^{2n} : n \geq 1 \} \]

Which one of the following is TRUE?

(A) Both \( L_1 \) and \( L_2 \) are context-free.
(B) \( L_1 \) is context-free while \( L_2 \) is not context-free.
(C) \( L_2 \) is context-free while \( L_1 \) is not context-free.
(D) Neither \( L_1 \) nor \( L_2 \) is context-free.

[Ans. B]
\( L_1 \) is CFL but \( L_2 \) is Not CFL

Q NO. 44

Consider the following languages.

\[ L_1 = \{ \langle M \rangle \mid M \text{ takes at least 2016 steps on some input} \} \]
\[ L_2 = \{ \langle M \rangle \mid M \text{ takes at least 2016 steps on all inputs} \} \] and
\[ L_3 = \{ \langle M \rangle \mid M \text{ accepts } \epsilon \} \],

where for each Turing machine \( M \), \( \langle M \rangle \) denotes a specific encoding of \( M \). Which one of the following is TRUE?

(A) \( L_1 \) is recursive and \( L_2, L_3 \) are not recursive
(B) \( L_2 \) is recursive and \( L_1, L_3 \) are not recursive
(C) \( L_1, L_2 \) are recursive and \( L_3 \) is not recursive
(D) \( L_1, L_2, L_3 \) are recursive

[Ans. C]
\( L_1 \) is Recursive
\( L_2 \) is Recursive
\( L_3 \) is Not Recursive
**Q NO. 45**

Which one of the following grammars is free from *left recursion*?

(A) \[ S \rightarrow AB \]
    \[ A \rightarrow Aa \mid b \]
    \[ B \rightarrow c \]

(B) \[ S \rightarrow Ab \mid Bb \mid c \]
    \[ A \rightarrow Bd \mid \varepsilon \]
    \[ B \rightarrow \varepsilon \]

(C) \[ S \rightarrow Aa \mid B \]
    \[ A \rightarrow Bb \mid Sc \mid \varepsilon \]
    \[ B \rightarrow d \]

(D) \[ S \rightarrow Aa \mid Bb \mid c \]
    \[ A \rightarrow Bd \mid \varepsilon \]
    \[ B \rightarrow Ae \mid \varepsilon \]

**[Ans. B]**

\[ s \rightarrow Ab \mid Bb \mid \varepsilon \]
\[ A \rightarrow Bd \mid \varepsilon \]
\[ B \rightarrow \varepsilon \]

Generates finite language

No recursion at all
Q NO. 46
A student wrote two context-free grammars $G_1$ and $G_2$ for generating a single C-like array declaration. The dimension of the array is at least one. For example,

```c
int a[10][3];
```

The grammars use $D$ as the start symbol, and use six terminal symbols $\text{int;}$, $\text{id;}$, $[\ ]$ and $\text{num}$. 

**Grammar $G_1$**
- $D \rightarrow \text{int}\ L$
- $L \rightarrow \text{id} \ E$
- $E \rightarrow \text{num}$
- $E \rightarrow [\text{num}] E$
- $E \rightarrow \text{num}$
- $a[10][3]$;

**Grammar $G_2$**
- $D \rightarrow \text{int}\ L$
- $L \rightarrow \text{id} E$
- $E \rightarrow \text{num}$
- $E \rightarrow E[\text{num}]$
- $E \rightarrow [\text{num}]$

Which of the grammars correctly generate the declaration mentioned above?

(A) Both $G_1$ and $G_2$
(B) Only $G_1$
(C) Only $G_2$
(D) Neither $G_1$ nor $G_2$

[Ans. A]

From $G_1$:
- $D \rightarrow \text{int}\ L$
- $\rightarrow \text{id} [E]$
- $\rightarrow \text{a} [\text{num}]$
- $\rightarrow \text{a} [10][3]$;

From $G_2$:
- $D \rightarrow \text{int}\ L$
- $\rightarrow \text{id} E$
- $\rightarrow \text{a} E[\text{num}]$
- $\rightarrow \text{a} [\text{num}][\text{num}]$
- $\rightarrow \text{a} [10][3]$;

$\therefore$ Both $G_1$ & $G_2$ generates the string $\text{int} a[10][3]$;
Q NO. 47
Consider the following processes, with the arrival time and the length of the CPU burst given in milliseconds. The scheduling algorithm used is preemptive shortest remaining-time first.

<table>
<thead>
<tr>
<th>Process</th>
<th>Arrival Time</th>
<th>Burst Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>P₁</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>P₂</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>P₃</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>P₄</td>
<td>8</td>
<td>3</td>
</tr>
</tbody>
</table>

The average turn around time of these processes is ________ milliseconds.

[Ans. *] Range: 8.2 to 8.3

Q NO. 48
Consider the following two-process synchronization solution.

```
entry: loop while (turn == 1);
(critical section)
exit: turn = 1;
```

```
entry: loop while (turn == 0);
(critical section)
exit: turn = 0;
```

The shared variable turn is initialized to zero. Which one of the following is TRUE?

(A) This is a correct two-process synchronization solution.
(B) This solution violates mutual exclusion requirement.
(C) This solution violates progress requirement.
(D) This solution violates bounded wait requirement.

[Ans. C]

Q NO. 49
Consider a non-negative counting semaphore S. The operation P(S) decrements S, and V(S) increments S. During an execution, 20 P(S) operations and 12 V(S) operations are issued in some order. The largest initial value of S for which at least one P(S) operation will remain blocked is ________.

[Ans. *] Range: 7 to 7
Q NO. 50

A file system uses an in-memory cache to cache disk blocks. The miss rate of the cache is shown in the figure. The latency to read a block from the cache is 1 ms and to read a block from the disk is 10 ms. Assume that the cost of checking whether a block exists in the cache is negligible. Available cache sizes are in multiples of 10 MB.

The smallest cache size required to ensure an average read latency of less than 6 ms is ______ MB.

[Ans.*] Range: 30 to 30
Q NO. 51

Consider the following database schedule with two transactions, $T_1$ and $T_2$.

$$ S = r_2(X); r_1(X); r_2(Y); w_1(X); r_1(Y); w_2(X); a_1; a_2 $$

where $r_i(Z)$ denotes a read operation by transaction $T_i$ on a variable $Z$, $w_i(Z)$ denotes a write operation by $T_i$ on a variable $Z$ and $a_i$ denotes an abort by transaction $T_i$.

Which one of the following statements about the above schedule is TRUE?

(A) $S$ is non-recoverable
(B) $S$ is recoverable, but has a cascading abort
(C) $S$ does not have a cascading abort
(D) $S$ is strict

[Ans. C]

As there is no dirty-read in the given schedule, the schedule is both recoverable and cascadeless.
Q NO. 52
Consider the following database table named *water_schemes*:

<table>
<thead>
<tr>
<th>scheme_no</th>
<th>district_name</th>
<th>capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ajmer</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>Bikaner</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Bikaner</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Bikaner</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>Churu</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Churu</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>Dungargarh</td>
<td>10</td>
</tr>
</tbody>
</table>

The number of tuples returned by the following SQL query is ________.

```sql
with total(name, capacity) as
 select district_name, sum(capacity)
 from water_schemes
 group by district_name
with total_avg(capacity) as
 select avg(capacity)
 from total
select name
 from total, total_avg
 where total.capacity >= total_avg.capacity
```

[Ans. *] Range: 2 to 2
The result of the query is: name
Bikaner
Churu

<table>
<thead>
<tr>
<th>Name</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ajmeer</td>
<td>20</td>
</tr>
<tr>
<td>Bikaner</td>
<td>40</td>
</tr>
<tr>
<td>Churu</td>
<td>30</td>
</tr>
<tr>
<td>Dungargarh</td>
<td>10</td>
</tr>
</tbody>
</table>

| Total_avg Capacity | 25 |
Q NO. 53
A network has a data transmission bandwidth of $20 \times 10^6$ bits per second. It uses CSMA/CD in the MAC layer. The maximum signal propagation time from one node to another node is 40 microseconds. The minimum size of a frame in the network is __________ bytes.

[Ans. *] Range: 200 to 200

L = ?
B = 20 Mbps
$T_P = 40$ micro sec
$T_x = L/B = 100$ ms
$T_x = 2T_P$
$L_{min} = 2T_P B = 2(40). (20)/8 = 200$ Bytes

Q NO. 54
For the IEEE 802.11 MAC protocol for wireless communication, which of the following statements is/are TRUE?

I. At least three non-overlapping channels are available for transmissions.
II. The RTS-CTS mechanism is used for collision detection.
III. Unicast frames are ACKed.

(A) All I, II, and III
(B) I and III only
(C) II and III only
(D) II only

[Ans. B]
RTS and CTS mechanism is used for collision avoidance, not collision detection
Q NO. 55

Consider a $128 \times 10^3$ bits/second satellite communication link with one way propagation delay of 150 milliseconds. Selective retransmission (repeat) protocol is used on this link to send data with a frame size of 1 kilobyte. Neglect the transmission time of acknowledgement. The minimum number of bits required for the sequence number field to achieve 100% utilization is __________.

[Ans. *] Range: 4 to 4

5 step problem
1. Calculate RTT = 2(T_p)
2. Calculate BR, window size in bits
3. Calculate $W = \frac{BR}{L}$
4. For selective repeat, ASN is set to $2W$
5. Sequence number, $k$

Bandwidth (B) = $128 \times 10^3$ bps
Propagation delay ($T_p$) = 150 msec
Packet size (L) = 1 kilobyte
Transmission delay ($T_t$) = $\frac{L}{B}$

$$T_t = \frac{1 \times 8 \times 10^3 \text{ bits}}{128 \times 10^3 \text{ bps}} = \frac{1}{16} \text{ sec}$$

$T_t = 64 \text{ msec}$

$W_s = \text{sender window size}$

$$\eta = \frac{W_c \times T_t}{T_t + 2T_p}$$

$$1 = \frac{64 + 2 \times 150}{364}$$

$W_s = 5.6875$

$W_s + W_R = \text{Available sequence numbers for Selective retransmission}$

$W_s = W_R$

$ASN = 2 \times W_s$

$ASN = 2 \times 5.6875$

$ASN = 11.375$

No. of bits in the sequence number = $\lfloor \log_2 ASN \rfloor$

= $\lfloor \log_2 11.375 \rfloor$

= 4